If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=10x+43
We move all terms to the left:
18x^2-(10x+43)=0
We get rid of parentheses
18x^2-10x-43=0
a = 18; b = -10; c = -43;
Δ = b2-4ac
Δ = -102-4·18·(-43)
Δ = 3196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3196}=\sqrt{4*799}=\sqrt{4}*\sqrt{799}=2\sqrt{799}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{799}}{2*18}=\frac{10-2\sqrt{799}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{799}}{2*18}=\frac{10+2\sqrt{799}}{36} $
| 3x-60=20+x | | 7(y–8)+24=-16(y–6) | | 23/7b=4 | | (x^2+2x)^6=0 | | 3s+23+36=8s+9 | | 2s+5=9s= | | 11u-38+31=10u | | 4v-16+30=v+49 | | 9=j3+ 5 | | 8x+16x+12+8+70=180 | | 4v–16+30=v+49 | | 30.00+x=59.50 | | 31v-28+41=33v+6 | | x+30+6x=5x+49 | | 17x-50+30=18x-30 | | (y^2+1/2y)^6=0 | | 3m+-7=-7 | | 80=–10(2+y) | | -8m+7=23 | | x+x-46=x+42 | | y=4(3+5) | | a2–12a=-27 | | 7x-7+3x+29=180 | | x-46+x=x+35 | | 11+t3=8 | | 7x^2-28x+35=0 | | 5(x+3)1/2(x`2)(5)=-3x-1 | | 7x-7=3x+29 | | y=4(3-5) | | 2x-16+x+7=x+46 | | T=60.6t/9-22 | | -6x+8x-5=3 |